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Abstract

We develop the theoretical foundation of a new representation of real numbers based
on the in�nite composition of linear fractional transformations (lft), equivalently the
in�nite product of matrices, with non-negative coe�cients. Any rational interval
in the one point compacti�cation of the real line, represented by the unit circle
S1, is expressed as the image of the base interval [0;1] under an lft. A sequence
of shrinking nested intervals is then represented by an in�nite product of matrices
with integer coe�cients such that the �rst so-called sign matrix determines an
interval on which the real number lies. The subsequent so-called digit matrices
have non-negative integer coe�cients and successively re�ne that interval. Based
on the classi�cation of lft's according to their conjugacy classes and their geometric
dynamics, we show that there is a canonical choice of four sign matrices which
are generated by rotation of S1 by �=4. Furthermore, the ordinary signed digit
representation of real numbers in a given base induces a canonical choice of digit
matrices.

1 Introduction

It is well-known that in oating-point computation the accumulation of round-
o� errors can lead to highly inaccurate results. Interval analysis [10] has been
used to partially circumvent this problem by maintaining a pair of bounding
oating-point numbers that is guaranteed to contain the real number or inter-
val in question. However, this interval can get unjusti�ably large and thereby
convey very little information.

In principle, exact real arithmetic provides an alternative technique for
real number computation and the veri�cation of numerical algorithms: Here,
in contrast to the �xed point or the oating point format, a real number is
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represented by an in�nite sequence of, say, digits, such that each digit gives
a better approximation to the real number in question. Any algorithm for
the computation of a function takes one such in�nite sequence as input and
outputs another in�nite sequence. Any element of the output sequence must
be obtained by reading some �nite segment of the input sequence. This basic
criterion rules out the ordinary decimal representation of real numbers for
exact computation. Indeed, it is easy to see that for example multiplication
by 3 is not computable in decimal representation: Given the input :3333 � � �
one cannot produce the �rst element of the output sequence. This �rst digit
should be 0 if after a �nite sequence of 3's a digit less than or equal to 2
occurs and should be 1 if eventually a digit greater or equal to 4 occurs. It
is well-known that the same problem exists in any other base. This is due
to the fact that the ordinary digit representation of real numbers in a given
base has no non-trivial redundancy: Apart from some exceptional numbers,
the representation of real numbers are unique.

One therefore has to look for a redundant representation of real numbers.
The most well-known example is the signed digit system in a given base. The
signed binary system, for example, is generated by the digits f�1; 0; 1g. Any
number r, say in [�1; 1], can be represented as an in�nite sequence :d1d2d3 � � �
with

r =
d1
2
+
d2
22

+
d3
23
� � �

The representation is redundant and can be expressed by the three a�ne maps

fk : [�1; 1] ! [�1; 1]
x 7! x+ k

2
;

for k = �1; 0; 1. In fact, for the real number r above we have:

frg = \
n�1

fd1fd2 � � � fdn[�1; 1]:

We can therefore identify the expansion :d1d2d3 � � � of r with the in�nite com-
position fd1fd2 � � � generated by the iterated function system (IFS) f�1; f0; f1
on [�1; 1]. Avizienis [1] and Wiedmer [16] have developed e�cient algorithms
for basic arithmetic operations in the signed digit system. The signed binary
system is also the basis of the �rst extension of PCF with a real number data
type in the work of Di Gianantonio [4,5].

In the late 1980's two other frameworks for exact real number computation
were proposed. In the Boehm and Cartwright's approach [3,2], developed
and implemented recently by Valerie Menissier, a computable real number is
approximated by B-adic numbers of the form k=Bn where B is the base, n
is a natural number and k is an integer. For any basic function in analysis a
feasible algorithm has been presented in order to produce an approximation
to the value of the function at a given computable real number up to any
threshold of accuracy. However, the computation is not incremental in the
sense that to obtain any more accurate approximation one has to compute
from scratch.
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Kornerup and Matula [9] and Vuillemin [15], proposed a representation
of computable real numbers by redundant continued fractions and presented
various incremental algorithms for basic arithmetic operations using the earlier
work of Gosper [7] and for some transcendental functions.

Any continued fraction expansion of a real number can be expressed as an
in�nite composition of linear fractional transformations (lft) of the form

f : x 7! ax+ c

bx+ d
: R�! R�;(1)

where R� is the real line extended with the point at in�nity and a; b; c; d 2Z.
In fact, any continued fraction expansion

r = a0 +
b0

a1 +
b1

a2 +
b2

a3+
...

of a real number r can be expressed as r = �0(r0) with

r0 = a1 +
b1

a2 +
b2

a3+
...

and �0(x) = a0+
b0
x
. Iterating the above scheme, we obtain r = �0�1 � � ��n(rn)

with

rn = an+1 +
bn+1

an+2 +
bn+2

an+3+
...

and �i(x) = ai +
bi
x

for 0 � i � n. One can therefore identify the origi-

nal continued fraction for r with the in�nite composition �0�1�2 � � �. Such
a representation of real numbers was already present in [15]. Nielson and
Kornerup [11] later developed a general framework for exact arithmetic by
representing real numbers by redundant in�nite composition of linear frac-
tional transformations (lft). Escardo's extension of PCF [6] is based on the
redundant representation of a real number in [0; 1] as an in�nite composition
of contracting a�ne maps f : [0; 1] ! [0; 1] with rational coe�cients; these
maps represent a particular class of lft's.

The search for an incremental and e�cient framework for real number com-
putation is a challenging exercise. A new, feasible and incremental represen-
tation of real numbers based on the composition of linear fractional transfor-
mations with non-negative integer coe�cients has been introduced in [13,14];
it has provided e�cient algorithms for exact computation of all elementary
functions. This has also led to an extension of PCF with a real number data
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Fig. 1. Stereographic projection.

type interpreted as the domain of intervals of the one point compacti�cation
of non-negative real numbers [12].

In this paper, we examine the theoretical basis of the new representation
of real numbers and show that with reasonable assumptions the framework
in [13,14] is a most suitable framework for exact real arithmetic.

2 The new representation of real numbers

There are a number of equivalent de�nitions of a computable real number. The
most convenient one for us is to consider a real number as the intersection of
a shrinking nested sequence of rational intervals; we then say that the real
number is computable if there is a master program which generates all these
rational intervals. It follows from the de�nition that the usual predicates
such as =, � and < on computable real numbers are not decidable. One
consequence is that, since there is no test for zero, we cannot avoid dividing
say 1 by 0. Therefore, any suitable framework for exact real arithmetic must
regard 1 as an ordinary real number. We therefore work with the extended
real line R� regarded as the one-point compacti�cation of the real line. A
simple model for R� is the unit circle S1 in the plane with its centre at the
origin equipped with the subspace Euclidean topology of the plane. Given
any point x 2 R lying on the horizontal axis, the line joining the top point of
S1 and x intersects S1 at a unique point s(x) as in Figure 1. We de�ne s(1)
to be the top point of S1. Then the map s : R� ! S1 is a homeomorphism
and is called the stereographic projection.

The usual ordering of the real numbers induces the anti-clockwise orien-
tation on S1. The interval [a; b] � S1 is de�ned to be the closed arc going
anti-clockwise from a to b. With this convention, the interval [a; a] denotes
the singleton fag rather than R�. An obvious metric on R�, compatible with
its topology, is given by taking the distance between x; y 2 R� to be the length
of the shorter arc connecting s(x) and s(y) on S1. However, this distance is
involves transcendental functions. A suitable metric � on R� which is easy
to compute is de�ned as follows. For extended reals x and y which are both
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non-negative or both non-positive, we put

�(x; y) =

�����
jxj � 1

jxj+ 1
� jyj � 1

jyj+ 1

����� :

Otherwise, if x and y have di�erent signs, then

�(x; y) = min(�(x; 0) + �(0; y); �(x;1) + �(1; y)):

Similar to terms like 1=0, we also cannot avoid expressions such as1�1,
0=0 and 00 which must all be denoted by ? = R�. This leads us naturally to
the domain IR� = f[a; b] � R�g[fR�g of the intervals of R� ordered by reverse
inclusion. Any continuous function f : R� ! R� has a canonical extension
f̂ : IR� ! IR�, given by f̂(A) = f(A) = ff(x)jx 2 Ag. For convenience, we
always write f̂ simply as f and often denote f(A) simply by fA.

We will use the class of lft's or M�obius transformations with real coe�cients
to encode any sequence of shrinking nested intervals and, hence, any real
number. The choice of lft's for this purpose is crucial to develop e�cient and
elegant algorithms for all elementary functions in this framework [13,14]. The
set of all real lft's, denoted by M , consists of maps f given in Equation 1
with a; b; c; d 2 R and ad � bc 6= 0. An lft is a homeomorphism of R�; it is
orientation preserving if ad� bc > and orientation reversing if ad� bc < 0.

We recall some elementary properties of M which are similar to those of
complex lft's given for example in [8]. Under composition of maps, M is
a group of homeomorphisms of R�. If GL(2;R) denotes the general linear
group of 2 � 2 non-singular matrices with real coe�cients, then the map-

ping � : GL(2;R) ! M which maps the matrix

0
@ a c

b d

1
A to the lft � with

�(x) =
ax+ c

bx+ d
is a group-homomorphism. The kernel K of � consists of all

matrices of the form �I where � 6= 0 and I is the identity matrix. Therefore,
M �= GL(2;R)=K. All this means that we can identify any lft up to scaling
with a 2�2 matrix. Furthermore, R� can be identi�ed with the projective real
line, i.e. the set of one dimensional subspaces of R2. In fact, any such subspace

V is spanned by a vector v =

0
@ k
l

1
A 2 V with k; l 2 R not both zero. The ratio

k=l 2 R� is independent of the choice of v 2 V . Hence, one can identify V

with k=l. The vector

0
@ k
l

1
A is said to represent x = k=l 2 R� in homogeneous

coordinates. We can normalise this vector by dividing it by
p
k2 + l2 to obtain0

@ sin�

cos�

1
A, where 0 � � < � with tan� = k=l. In Figure 1, � is represented as

the angle \s(0)s(1)s(x), between the line segments s(1)s(0) and s(1)s(x).

Note that the angle \s(0)Os(x), between the line segments Os(0) and Os(x)
is, 2�. Therefore, as � increases from 0 to �, x increases from 0 to in�nity
and back through negative numbers to 0, while s(x) goes from s(0) anticlock-
wise once around S1. The action of an lft in these coordinates is reduced
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to matrix multiplication. Indeed, for the lft � above, we have �(k
l
) = ak+cl

bk+dl
,

which in homogeneous coordinates can be simply written as multiplication by
a representative matrix:

0
@ k
l

1
A 7!

0
@ ak + cl

bk + dl

1
A =

0
@ a c

b d

1
A
0
@ k
l

1
A :

Therefore, we can freely move, on the one hand, between k=l 2 R� and its

homogeneous representation

0
@ k
l

1
A and on the other, between the lft x 7!

ax+ c

bx+ d
and its matrix representation

0
@ a c

b d

1
A. In both cases the representation

is unique up to scaling.

A basic property of the group M is that it is 3-transitive. This means
that for any pair of distinct triples (x1; x2; x3) and (y1; y2; y3) with xi; yi 2 R�
(i = 1; 2; 3) there exists a unique lft � 2 M with yi = �(xi) for i = 1; 2; 3. An
immediate consequence is the following property.

Proposition 2.1 Given two non-trivial intervals [p; q] and [r; s] with p 6= q
and r 6= s, there exists an lft � 2 M with �([p; q]) = [r; s].

It follows that if we �x a base interval, then we can express, or encode, all
other non-trivial intervals as the image of this base interval under an lft. The
most e�cient base interval is [0;1] as no computation is needed to determine

the lft in the proposition. Indeed x 7! rx + s

x+ 1
and 7! sx+ r

x+ 1
both map

[0;1] to [r; s], the �rst reverses the orientation whilst the second preserves

it. Furthermore, if [r; s] is a rational interval [
a

b
;
c

d
], then the maps x 7!

ax+ c

bx+ d
and x 7! cx+ a

dx+ b
have integer coe�cients and map [0;1] onto [

a

b
;
c

d
]

respectively reversing and preserving the orientation. Note that, if k and l are

positive integers, the maps x 7! kax+ lc

kbx+ ld
and x 7! kcx+ la

kdx + lb
will satisfy the

same property. However, the lft will be unique up to change of orientation if
we require that the sum of the absolute values of its coe�cients be minimal.

3 Re�ning semi-groups of lft's

In this section, we study re�nement of intervals by lft's. An lft � 2 M re�nes
an interval [p; q] � R� if �[p; q] � [p; q]. Clearly, the identity transformation
re�nes any interval. We say a subset S � M re�nes [p; q] if each element of
S re�nes [p; q]. Clearly, if S re�nes [p; q], then the semi-group generated by S
also re�nes [p; q]. It follows that there is a largest semi-subgroup of M which
re�nes a given interval.

Consider the interval [0;1]. Let M + � M be the set of lft's whose coe�-
cients are all non-negative or, equivalently, all non-positive. It is easy to see
that M + is the re�ning semi-group of [0;1]. Furthermore, we have:
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Proposition 3.1 [0;1] is the unique interval which has M + as its re�ning
semi-group.

What happens if we change the base interval? If B is any non-trivial
interval, then B = �[0;1] for some lft � 2 M and we have:

Corollary 3.2 The re�ning semi-group of B = �[0;1] is given by

�M+��1 = f� ��1j 2 M +g;
in other words,  2 M re�nes B i� ��1� 2 M + .

The above corollary implies that the re�ning semi-group of the interval
[0;1], namely M + , is distinguished by having the simplest characterization.

We now consider [0;1] as the base interval and characterize the re�nement
of intervals when they are expressed as images of [0;1] under lft's.

Proposition 3.3 For lft's � and  we have �[0;1] �  [0;1] i�  = �
with  2 M + .

It follows that for any shrinking sequence of nested intervals [p0; q0] �
[p1; q1] � [p2; q2] � � � � we have [pn; qn] = �0�1 � � � �n[0;1] where �0 2 M and
�i 2 M + for 1 � i � n. Therefore, the sequence can be expressed as an in�nite
composition of lft's, or equivalently in�nite product of matrices, �0�1�2 � � �.

A rational number can be represented by a vector with integer coe�cients.
A �nite product �0�1�2 � � ��n, with �0 2 M , �i 2 M + for 1 � i � n � 1
and �n a vector with non-negative coe�cients, represents a �nite sequence of
shrinking nested intervals collapsing into a rational number.

We have therefore shown that any real number can therefore be represented
as the intersection

T
n�0 �0�1�2 � � � �n[0;1] with �0 2 M and �i 2 M + (i � 1)

such that �n has integer coe�cients for all n � 0. If �n : x 7! ax+ c

bx+ d
, then in

matrix notation, the real number can be expressed as the in�nite product
0
@ a0 c0

b0 d0

1
A
0
@ a1 c1

b1 d1

1
A
0
@ a2 c2

b2 d2

1
A
0
@ a3 c3

b3 d3

1
A � � � :

We call this a normal product. It gives a simple representation and a con-
venient operational semantics for the lazy representation of the computable
reals: �nite segments of the above matrix product give incremental interval
approximations to the real number represented by the matrix product. More
speci�cally the �rst matrix tells us that the result is contained in the interval

[
a0
b0
;
c0
d0
] or [

c0
d0
;
a0
b0
] according to the sign of the determinant of the matrix. The

other matrices will successively re�ne this interval to give better and better
approximations to the real number. The �rst matrix is called a sign matrix
whereas the other matrices are digit matrices. The information contained in

an lft � : x 7! ax+ c

bx+ d
: R�! R� is de�ned by info(�) = �[0;1].
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4 Geometric dynamics of lft's

Lft's can be classi�ed according to their conjugacy classes and their geometric
dynamics on R�. The following results for real lft's are obtained from the
corresponding results for lft's with complex coe�cients [8]. Consider the lft

� : x 7! ax+ c

bx+ d
: R� ! R�. We consider the �xed points of � which are

solutions of the quadratic bx2+x(d�a)� c = 0. If b = 0, then there is a �xed

point at x = 1 and another one at x =
c

d � a
if a 6= d. If b 6= 0, then the

roots of the quadratic are given by
a�d�

p
(a+d)2�4(ad�bc)

2b
. We can distinguish

the following three cases:

� If (a+ d)2 = 4(ad � bc), then there is a unique �xed point at
a� d

2b
. Note

that, in this case, we necessarily have ad� bc > 0.

� If (a + d)2 > 4(ad � bc), then there are two real roots. Here we can have
ad� bc > 0 or ad � bc < 0.

� If (a+d)2 < 4(ad� bc), then there are two complex conjugate roots. In this
case, we always have ad� bc > 0.

Next we examine the conjugacy classes in M . Recall that two elements u
and v in a group are said to be conjugate written u � v if the there is an
element w with u = wvw�1. This is an equivalence relation which partitions
the group into conjugacy classes. In GL(2;R), the trace and the determinant
of a matrix are invariant under conjugacy. We denote the trace and the

determinant of a matrix M =

0
@ a c

b d

1
A by trM = a + d and detM = ad � bc

respectively. Since an lft is represented by a matrix up to a scaling factor, it

follows that �(M) � �(M 0) implies (trM)2

detM = (trM 0)2

detM 0
.

Given an lft � 2 M and a matrixM 2 GL(2;R) with �(M) = �, we de�ne

the conjugacy invariance of � by inv� = (trM)2

detM . Clearly inv� is independent of

the representative matrix M ; in fact if � : x 7! ax+ c

bx+ d
then inv� =

(a+ d)2

ad� bc
.

Therefore:

Proposition 4.1 For �; �0 2 M , we have inv� = inv�0 if � � �0.

A basic property of conjugacy in M is that it preserves �xed points and
limits. If the lft's � and  are conjugate with � =  �1, then x 2 R� is
a �xed point of  i� (x) is a �xed point of �. Furthermore  n(x) ! y as
n!1 i� �n(x)! y as n!1.

The identity element in a group forms a conjugacy class and the conjugacy
classes in M are fully described by selecting a representative from each other
class. We de�ne the family �� : x 7! �x : R� ! R� in M , for � 2 L =
fexp i�j0 < � < 2�g [R n f0g.
� �1 : x 7! x+ 1 for � = 1.
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� �� : x 7! �x : R�! R� for � 2 R n f0; 1;�1g.
� �� : x 7! x cos �

2
+ sin �

2

�x sin �
2
+ cos �

2

for � = exp i� (0 < � < 2�).

The lft �exp i� represents the rotation of S1 by �. In fact, assume x 2 R� is

represented in homogeneous coordinates by

0
@ sin �

2

cos �

2

1
A where \s(0)Os(x) = �

as in Figure 1 of Section 2. Then its image y = �exp i�(x) is represented by

the vector

0
@ sin �+�

2

cos �+�
2

1
A. Therefore, we have \s(0)Os(y) = � + � and hence

\s(x)Os(y) = �.

We note that �� � ���1 for all � 2 L. This is trivial when � = 1 and for
� 6= 1 we have �� =  ���1 where  : x 7! 1=x satis�es  =  �1. Also we

have inv�� = �+
1

�
+ 2 for all � 2 L.

Proposition 4.2 Any non-identity element in M is conjugate to �� for some
� 2 L.

Proposition 4.3 �� is conjugate to �� i� � = � or � = ��1.

Corollary 4.4 Two non-identity elements � and  of M are conjugate i�
inv� = inv .

We now classify the lft's in M according to their geometric and dynamic

behaviour. Any non-identity element � 2 M , with � : x 7! ax+ c

bx+ d
say, is,

as we have seen, conjugate to �� for some � 2 L. Note that � does not
determine � completely, since � is also conjugate to ���1. The pair f�; ��1g is
called the multiplier of �. Two non-identity elements in M will be conjugate
i� they have the same multipliers. The multiplier for � is obtained by solving
the quadratic inv� = inv�� = � + ��1 + 2, i.e. � and ��1 are solutions of
�2 + (2� inv�)�+ 1 = 0 which has discriminant � = inv�(inv�� 4).

As seen already, � will have a unique �xed point x0 i� inv� = 4, i.e. � = 1.
In this case, � � �1 and � is called parabolic. Since limn!1 �n1x = 1 for all
x 2 R� it follows that limn!1 �nx = x0 for all x 2 R�.

If � has two distinct �xed points then we distinguish between the following
cases:

� � � �� for some real � with j�j 6= 1. This is equivalent to inv� > 4 or
inv� < 0. In this case, � has two real �xed points. The map �� has two
�xed points at 0 and 1. If j�j > 1, the orbit of any point in R� other than
0 tends to 1 under ��. The opposite happens if j�j < 1. This means that
one �xed point is an attractor and the other a repeller. The same therefore
is true for �. The map � is called hyperbolic if inv� > 4, equivalently
ad�bc > 0, or � > 0. On the other hand, � is called loxodromic if inv� < 0,
equivalently ad� bc < 0, or � < 0.
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� � � �exp i� for some 0 < � < 2�. This is equivalent to 0 � inv� < 4. The
map � is called elliptic. In this case, �n is the identity lft for some posi-
tive integer n i� � is a rational multiple of 2�. Since limm!1 �mexp i�(x) =
limm!1 �exp im�(x) does not exist for any x 2 R� the same is true for
limm!1 �m(x).

It follows immediately from the de�nitions that the four types of parabolic,
hyperbolic, loxodromic and elliptic lft's are each invariant under conjugacy.

We note that an a�ne map x 7! �x + c with � 6= 0 is parabolic if � = 1
and c 6= 0, hyperbolic if 0 < � < 1 or 1 < �, loxodromic if �1 < � < 0 or
� < �1, and elliptic if � = �1. Furthermore, any hyperbolic or loxodromic
lft is conjugate to a contracting linear map. An elliptic lft is, by de�nition,
conjugate to a rotation �exp i� of S1. As in the complex case [8], a non-identity
lft � 2 M will have a �nite order (i.e., �n = Id for some n � 2) i� � is elliptic;
therefore, any �nite subgroup of M consists of the identity map and elliptic
lft's. For real lft's, there is a simple characterisation of all �nite groups. Recall
that the dihedral group of order 2k is the group generated by two elements p
and q with pk = q2 = e and pmh = hp2k�m, where e is the identity element.

Proposition 4.5 If G is a �nite subgroup of M of order n, then there exists
an lft  such that the conjugate subgroup  G �1 = f g �1jg 2 Gg satis�es
the following:

� either  G �1 is the cyclic group of rotations of S1 generated by �exp 2�i

n

, or

� n is even, say n = 2k, and  G �1 is the dihedral group generated by the
rotation �exp 2�i

k

and the reection x 7! �x.

5 Exact Floating Point

So far our representation allows arbitrary normal products of integer matrices
M0M1M2 � � � with M0 2 M and Mi 2 M+ for i � 1. This, in practice, results
in some major problems. Firstly, intervals will be re�ned at an arbitrary
rate, making any analysis of complexity of algorithms practically impossible.
Secondly, matrix multiplication can quickly produce huge integers in a matrix
quite disproportionate to the information contained it.

In analogy with oating point formats, where number representations in
a given base are generated by two sign symbols and a �nite number of digits,
we restrict the sign and digit matrices to a �nite set of speci�c matrices. We
will see that sign matrices should be rotations of S1 which are elliptic lft's
whereas digit matrices should be contracting maps which are hyperbolic lft's.

5.1 Sign Matrices

We start with sign matrices. Recall the de�nition of the information con-
tained in an lft �, i.e. info(�) = �[0;1]. The information in sign matrices
must overlap and cover S1. If we further assume that they have the same
length with respect � and are evenly placed on S1, then they will be gener-

10
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ated by rotations of S1. The lft �exp i� : x 7! x cos �

2
+ sin �

2

�x sin �
2 + cos �

2

rotates S1 by �.

Furthermore, �exp i� generates a �nite cyclic group i� � is a rational multiple
of 2�. Furthermore, our choice will be restricted if the lft is required to have
integer coe�cients.

Proposition 5.1 Suppose � is a non-integral rational multiple of 2�. Then
the lft �exp i� will have integer coe�cients i� � = �

2
or � = �.

For � = �, we get the cyclic group of order 2 consisting of �exp i� : x 7! � 1
x

and the identity lft Id : x 7! x. This gives the two intervals info(�exp i�) =
[1; 0] and info(Id) = [0;1] which are not overlapping. For � = �=2 we get
the cyclic group of order 4 with elements �exp i�

2

: x 7! x+1
�x+1 , �exp i� : x 7! � 1

x
,

�exp 3�i

2

: x 7! x�1
x+1 and Id : x 7! x, with information [1;�1]; [1; 0]; [�1; 1] and

[0;1] respectively. The simplest matrices representing these lft's are:

S1 =

0
@ 1 1

�1 1

1
A S� =

0
@ 0 1

�1 0

1
A S0 =

0
@ 1 �1
1 1

1
A S+ =

0
@ 1 0

0 1

1
A :

We therefore take these as our sign matrices. The group G generated by S1
and the reection x 7! �x is a dihedral group of order 8 and we have:

Proposition 5.2 The group G is the unique �nite group of lft's with inte-
ger coe�cients which contains the cyclic group of sign matrices as a proper
subgroup.

5.2 Digit Matrices

We now would like to select an appropriate set of digit matrices from M + .
Since composition of digit matrices are required to represent shrinking se-
quences of intervals, we will look for matrices which contract distances in
[0;1] with respect to the metric �. Digit matrices must overlap and cover
[0;1].

Note that for x; y 2 [0;1], we have �(x; y) = jx�1
x+1 � y�1

y+1 j = jS0(x)�S0(y)j
and S0 is a homeomorphism from [0;1] to its image S0[0;1] = [�1; 1]. Let
� 2 M + and consider the restriction � : [0;1] ! [0;1]. Then S0�S

�1
0 is a

homeomorphism from [�1; 1] onto itself.

Proposition 5.3 The map � : [0;1]! [0;1] is contracting with respect to
the �-metric i� S0�S

�1
0 : [�1; 1] ! [�1; 1] is contracting with respect to the

Euclidean metric.

It follows that for any base b > 1, the signed digit representation on [�1; 1]
in base b induces via the homeomorphism S0 a suitable set of digit matrices
in M + .

The signed digit system in base b > 1 in [�1; 1] is generated by the con-

11
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tracting maps

fk : [�1; 1] 7! [�1; 1]
x 7! x+ k

b

with k 2 Dig(b) = f�b + n; b � njn 2 N; 1 � n � bbcg, where bbc is the
integral part of b. Here, b can be allowed to be a rational or an irrational
number. The case b = 3=2 was considered by Brower and the case b = �1+

p
5

2 ,
the golden ratio, has been studied by di Gianantonio [4]. We now de�ne the
digit matrices in base b:

Dk = S0fkS
�1
0 =

0
@ 1 + b� k 1� b+ k

1 � b+ k 1 + b+ k

1
A :

For example, for base 2, we have the four sign matrices S+, S1, S�1 and S0
together with the three digit matrices D�1, D0 and D1.

Note that any �nite composition of the a�ne contractions fk, where k 2
Dig(b), is an orientation preserving a�ne contraction. Therefore, any �nite
composition of digit matrices is conjugate to an orientation preserving a�ne
contraction and is therefore hyperbolic.

Exact oating point in base b is de�ned as the representation of real num-
bers by in�nite composition of lft's, or, equivalently, in�nite product of ma-
trices, such that the �rst matrix is one of the sign matrices above and the
subsequent matrices are digit matrices.

For each �nite composition Dk1Dk2 � � �Dkn of digit matrices we have:

S0Dk1Dk2 � � �Dkn [0;1] = fk1fk2 � � � fkn [�1; 1]:
Therefore for every in�nite composition of digit matrices we obtain\

n�0
S0Dk1Dk2 � � �Dkn [0;1] =

\
n�0

fk1fk2 � � � fkn [�1; 1]:

This gives us:

Proposition 5.4 A real number with signed digit expansion :k1k2k3 � � � (with
kj 2 Dig(b) for j � 1) is represented in exact oating point by the in�nite
product

S0Dk1Dk2Dk3 � � � :
We have already noted that rational numbers can be represented by integer

vectors. Addition by a positive rational number p=q 2 Q+ is represented by
the parabolic lft x 7! x + p=q. Similarly, multiplication by p=q 2 Q+ is
represented by the lft x 7! px=q which is hyperbolic for p 6= q. Recall that
parabolic and hyperbolic matrices preserve orientation. Moreover, orientation
preserving lft's in M + have the following property under composition.

Proposition 5.5 The composition of any two orientation preserving lft's in
M + is a hyperbolic or a parabolic or the identity lft.

Therefore any semi-group generated by hyperbolic and parabolic lft's, for
example the semi-group generated by the digit matrices in a given base and the
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lft's for addition and multiplication by positive rational numbers, will consist
of the identity map and parabolic and hyperbolic lft's.

Algorithms for computing elementary functions are developed in [13,14]
using lft's with two arguments as proposed initially by Gosper [7].
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